Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available February 12, 2026
- 
            Free, publicly-accessible full text available February 12, 2026
- 
            Abstract C−H amination and amidation by catalytic nitrene transfer are well‐established and typically proceed via electrophilic attack of nitrenoid intermediates. In contrast, the insertion of (formal) terminal nitride ligands into C−H bonds is much less developed and catalytic nitrogen atom transfer remains unknown. We here report the synthesis of a formal terminal nitride complex of palladium. Photocrystallographic, magnetic, and computational characterization support the assignment as an authentic metallonitrene (Pd−N) with a diradical nitrogen ligand that is singly bonded to PdII. Despite the subvalent nitrene character, selective C−H insertion with aldehydes follows nucleophilic selectivity. Transamidation of the benzamide product is enabled by reaction with N3SiMe3. Based on these results, a photocatalytic protocol for aldehyde C−H trimethylsilylamidation was developed that exhibits inverted, nucleophilic selectivity as compared to typical nitrene transfer catalysis. This first example of catalytic C−H nitrogen atom transfer offers facile access to primary amides after deprotection.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
